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Abstract 

The DenseNet-264 uses an additive principle to merge the previous layer with the next layer and 

further it concatenates the previous layer output with next layer. This DenseNet-264 model 

improves the declined accuracy produced due to vanishing gradients in case of high-level neural 

network. Hence, the information is preserved in longer paths between the source layer and 

destination layer without getting vanished in between the layers. In this paper, we study the 

DenseNet-264 top-5 metric to classify the Hyper-Spectral Image (HSI) features from the input 

HSI. The simulation is conducted on several HSI images to test the efficacy of the model against 

various datasets, and the results of simulation shows that the proposed method achieves 99% 

accuracy than the other existing classifier.  

Keywords: Classification, Hyperspectral Image, DenseNet-264, Tensorflow 

1. Introduction 

In existing image spectrometers, the combination of spectroscopy and image technologies 

enables the acquisition of different wavelength channels in different locations in an imaging 

plane of spatially-spectral properties that capture the visible and solar-reflected infrared and 

short-wellness infrastructure. This image plane is commonly produced by airborne spectrometers 

[1], particularly in the remote sensor sector, which provide massive volumes of data per hour, 

frequently close to the information gyrate, while simultaneously improving spatial resolution. In 

other words, the image plane produces a large amount of data.  
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For example, the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [2] provides 

continuous spectrum coverage at 10 nm intervals across the spectrum, with a range of 

information spanning from 0.4 to 2.45 m in 224 spectral bands. Another well-known aerial 

spectrometer is the Reflective Optics System Imaging Spectrometer (ROSIS-3) [3], which covers 

a range of 0.43–0.86 m and has over 100 spectral bands at 4 nm intervals.  

The study of patterns has been a significant focus of HSI categorization for decades, and as a 

result, a large number of research findings have been generated. In previous works, the 

methodologies of spectral feature, spatial feature, and spectral-spatial feature extraction have all 

been presented [12]. One of the earliest and most fundamental constituent parts of a picture is its 

spectrum feature, which is also known as either the spectral vector or the spectral curve. The 

spatial feature [13] also refers to the connection between the core pixel and the surrounding area, 

which has the potential to dramatically improve the model resistance to failure.  

At the beginning of the research on HSI classification, pure spectral feature-based approaches 

were used to classify HSI images. These approaches simply apply classifiers to pixel vectors to 

produce classification results without any feature extraction and were used in the beginning of 

the research on HSI classification. In contrast, because of the non-linear relationship between 

spectra and ground objects, classifying models using raw spectra proves to be more difficult than 

previously thought. As a result, the emphasis on dimension reduction and feature extraction has 

increased in more recent methodologies as a result of this. In order to reduce the number of 

dimensions, some of the most widely used. Despite this, the models' overall performance 

continues to be subpar.  

From hyperspectral images, we can tell that distinct surface items can sometimes have the same 

spectral characteristic and that the same surface objects can occasionally have different spectral 

characteristics when compared to one another. A variety of factors influence the spectra of 

ground objects, including lighting, ambient, atmospheric, and temporal variables.As a result, 

there is an increased likelihood of misclassification. Therefore, these algorithms rely entirely on 

spectral information, which results in suboptimal classification results. When it comes to 

improving classification accuracy and approach resilience, the spatial characteristics of ground 

objects provide extensive information on shape, context, and layout regarding ground objects and 

neighbouring pixels are likely members of the same class, which can be used to improve 

classification accuracy and approach resilience. 

The spectrum collection of nband-images in narrow and continuous spectral bands is the 

information acquired by spectrometers in imaging [4]-[5]. In hyperspectral images, the nbands 

parameter is typically in the hundreds or thousands, embracing a vast spectral frequency range 

[6]. As a result, each pixel has a unique spectral signature that provides a highly detailed and 

distinct reflection of each captured land cover. This resulted in the development of hyper-spectral 

image (HSI) as a tool for analysing the earth surface for a variety of purposes, offering greater 

discrimination among the many materials contained in the image. Classification [7], spectral 
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unmixing [8], target recognition and anomaly detection [9], and HSI analysis are some of the 

methods used. In recent years, HSI categorization has emerged as a key topic in the area of 

remote sensing [10]. 

In this paper, we study the DenseNet-264 top-5 metric to classify the Hyper-Spectral Image 

(HSI) features from the input HSI. The DenseNet-264 uses an additive principle to merge the 

previous layer with the next layer and further it concatenates the previous layer output with next 

layer.  

2. Related Works 

In the literature, some unsupervised pixel classification devices show good classification 

precision performance. Uncontrolled approaches, on the other hand, do not require labelled data, 

which is classed based on the inherent similarities in the data structure, which is generally 

quantified as the distance between samples and proportionally separated into groups, with each 

group assigned a label. The most representative unsupervised approaches are KNN [11] and the 

iterative self-organizing algorithm of data analysis. 

Support Vectors Machine (SVM) [13] and Logistic Regression [12], which can accurately 

perform in the presence of a small set of training settings where the former can easily model a 

post office, are popularly monitored methods: decision trees (DTs) and random forests (RFs), 

which have previously been successful in providing good and accurate land cover maps. These 

approach issues are exacerbated by the high spectral dimension of the HSI data and the limited 

availability of workout samples. In reality, the supervision category gradually increases with the 

rise in spectral bands but drops considerably when the nbands exceed a certain limit, 

necessitating the use of dimensional reduction procedures to reduce the nbands.  

Traditional categorization systems have some limitations when compared to ANNs. ANNs have 

more flexible structures that can handle much larger data sets without the need for prior 

knowledge of statistical data distribution. They have a strong ability to generalise. The HSI data 

classification garnered a lot of interest in this area since it was able to create more abstract data 

visualisations hierarchically from the original data [14]. In other words, DNNs learn basic 

characteristics in the early layers and develop more intricate ones in the last (high-level) layers 

by combining the simpler ones [15].  

Convolutional neural networks (CNNs) in particular have become a deeply representational 

model because of their feature detection power, which greatly enhances item categorization and 

detection [16]. As a result, the CNN obtains good generality in HSI classification [17]. 

Since its inception a decade ago, deep learning has experienced rapid growth and garnered 

widespread attention from researchers and industry leaders alike. As opposed to the standard 

machine learning paradigm, which involves developing feature patterns from start, deep learning 

technology makes use of data to learn feature patterns on its own. It has just recently been made 
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available in the HSI classification field as well. Researchers have presented a number of novel 

deep learning-based HIS classification algorithms that are both effective and efficient. 

It is required to provide a large number of training examples with deep learning in order to 

correctly train the model and modify the model parameters. Because it demands specialised 

knowledge, and there is not enough training available, labelling by hand is time-consuming and 

expensive in the real world. 

3. Proposed Model 

The DenseNet-264 uses an additive principle to merge the previous layer with the next layer and 

further it concatenates the previous layer output with next layer. DenseNet-264 improves the 

accuracy that helps in classifying the instances from the HSI images.  

Feature Space 

After translating the data into feature space, the dot product can be used to establish a similarity 

measure between two sets of data. As long as the feature space is selected appropriately, pattern 

recognition becomes straightforward. 

( ) ( ) ( )1 2 1 2 1 2,x x K x x x x  =    

 

Figure 1: Feature Space Representation 

DenseNet-264 

Consider the following scenario: x0 is a single image that has been processed by a neural 

network. The network consists of L layers, each of which conducts a non-linear transformation 

Hl, where l denotes the layer as in Figure 1. 
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Figure 2: DenseNet-264 architecture 

ResNets. 

The output of the lth layer is sent into the (l+1) th layer in traditional convolutional feed-forward 

networks [16], resulting in the layer transition xl = Hl(xl-1). ResNets include a skip-connection 

that avoids the identity function non-linear transformations: 

xℓ = Hℓ(xℓ−1) + xℓ−1. (1) 

One advantage of ResNets is that the gradient can flow straight from later layers to earlier levels 

through the identity function. However, the summing of the identity function and the output of Hl 

may obstruct information flow in the network. 

Dense connectivity. 

We suggest a novel connectivity pattern to increase information flow across levels: we add direct 

connections from any layer to all following layers. The conceptual layout of the resulting 

DenseNet is shown in Figure 1. Consequently, the ℓ th layer receives the feature-maps of all 

preceding layers, x0, . . . , xℓ−1, as input:  

xℓ = Hℓ([x0, x1, . . . , xℓ−1]), (2) 

where [x0, x1, . . . , xℓ−1] refers to the concatenation of the feature-maps produced in layers 0, . . 

. , ℓ−1.  

This network architecture is known as a Dense Convolutional Network because of its dense 

connectedness (DenseNet). We concatenate the numerous inputs of Hl() in Eq.(2) into a single 

tensor for ease of implementation. 

Composite function.  

We define Hl() as a composite function of three sequential operations: batch normalisation (BN), 

rectified linear unit (ReLU), and 3x3 convolution (Conv). 

Pooling layers.  

When the size of feature-maps changes, the concatenation method in Eq. (2) becomes 

impractical. However, down-sampling layers that alter the size of feature-maps are a crucial part 

of convolutional networks. To aid downsampling, our architecture divides the network into 

multiple tightly connected, dense units. Transition layers are layers that exist between blocks and 

Input (x0) -
ReLU 
Conv

ReLU 
Conv (H1)

ReLU 
Conv (H2)

ReLU 
Conv (H3)

Transistion 
Layer (H4)
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conduct convolution and pooling. In our experiments, we used a batch normalisation layer, a 1 x 

1 convolutional layer, and a 2 x 2 average pooling layer as transition layers. 

Growth rate.  

If each function Hl creates kfeaturemaps, the lth layer will have k0 +k ×(l−1) input featuremaps, 

where k0 is the channel count. DenseNet differs from existing network topologies in that it 

allows for extremely tiny layers, such as k = 12. The hyperparameter k refers to the rate of 

network growth. According to one interpretation, each layer in its block has access to all of the 

feature-maps that came before it. The feature-maps represent the general state. This state is made 

up of k feature-maps contributed by each layer. The rate of expansion affects how much new 

information each layer contributes to the overall state. The global state may be accessible from 

anywhere in the network once it is written, and there is no need to transfer it from layer to layer 

as in typical network topologies. 

An early class of algorithms was developed in order to achieve a precise match between the data 

and the model, in order to provide hypotheses that correctly classified the training data. 

Generalization refers to a hypothesis's capacity to accurately classify data that is not included in 

the training data set. Because it inhibits over-generalization, DenseNet outperforms neural 

networks that are prone to over-generalization in terms of performance. More information may 

be found in the graphic (Figure 3) on how to find the best trade-off between complexity and the 

number of epochs. 

 

Figure 3: Complexity with growth rate 

Bottleneck layers.  

Despite the fact that each layer produces k just a few output feature-maps, it typically has a huge 

number of inputs. 1 x 1 convolution can be used as a bottleneck layer to reduce the number of 

input feature-maps and thus improve computing performance. 

Compression.  
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To increase model compactness even further, we can reduce the number of feature-maps at 

transition layers. If a dense block has m feature-maps and we allow the subsequent transition 

layer to generate m output feature maps, we call our model DenseNet-BC. 

A matrix of predictors and a numeric vector with labels are required to be supplied as input data 

for the training process. This is sufficient information to get started training the model, but we 

will specify a few more arguments in order to get better control over the training loop during the 

next step. With batch size, we can control how many observations are passed through at a time, 

and with epochs = 20, we can instruct the model to pass all of the training data through the 

training loop 20 times. The study provides an internal validation split at the end of the process by 

setting validation split of 0.25; this keeps 25% of the data for validation and the results are given 

in Figure 4. 

 

Figure 4: Training and Validation Accuracy of DenseNet 

4. Performance Evaluation 

Tensor Flow is most likely the most popular deep learning technology. Because HSI data 

classification is so crucial in RS applications, it was the focus of many of the DL outcomes we 

examined. HSI processing faces numerous challenges, including high data complexity and often 

limited training sample numbers. A parametric depth study discovered that adding more layers 

after a depth of nine caused no improvement in depths ranging from one to fifteen, and that 

adding more layers after a depth of nine produced no improvement in depths ranging from 1-15. 

The settings used for each data set are shown in Table 1. 

Table 1: Hyper-parameters 
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Hyper-parameter Pavia Centre Salinas Indian Pines 

Weight decay 0.0002 0.001 0.0005 

Number of training steps 40,000 50,000 50,000 

Batch normalization decay 0.99 0.99 0.99 

Label smoothing 0.1 0 0 

Dropout rate 0.2 0.5 0.4 

Learning rate 1.28 0.05 0.4 

Batch size 2048 128 1024 

Number of warm up steps 2000 0 2500 

Pseudo label threshold 0.7 0.975 0.95 

 

4.1. Datasets 

The researchers examined three different datasets to validate the proposed model with existing 

CNN architectures, which are given below: Pavia Center, Indian Pines, and Salinas 

4.2. Results and Comparisons 

The following is a visualisation of the Ground Truth of the Indian Pines dataset: 

 

(a) Indian Pines 
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(b) Salinas 

 

(c) Pavia Center 

Figure 5: Ground Truth Visualization  

The visualization of the six randomly selected bands over 200 is shown below: 
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(a) Indian Pines 

 

(b) Salinas 

 

(c) Pavia Center 

Figure 6: Indian Pines - Visualization of the Bands 
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Figure 7: Confusion Matrix (Actual vs. Predicted) for all three datasets 

Top-1 and Top-5 accuracy levels on various Dense Net Models during training on the HSI 

dataset are shown in Table 2. Table 3 shows the HSI Classification Accuracy (mean standard 

deviation) after ten rounds of training/testing. In the Table 4 discuss about the HSI Classification 

accuracy during testing with Top-1 and Top-5 accuracy levels with varying parameters of CNN 

architectures 

Table 2: Top-1 and Top-5 accuracy levels on various Dense Net Models on HSI Dataset during 

training 

Method 
Accuracy 

top-5 

Accuracy 

top-1 

ResNet-50 95.45 78.67 

ResNet-152 95.96 79.38 

Poly Net 96.37 80.20 

Inception-v3 96.78 80.92 

Xception 97.08 81.64 

Inception-v4 96.47 80.71 

Inception-resnet-v2 96.67 80.82 

ResNeXt-101 98.82 84.40 

DenseNet-264 98.72 85.11 
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Table 3: HSI Classification accuracy (mean± std) over 10 iterations during training/testing 

Method 
Training 

(mean ± std) 

Testing 

(mean ± std) 

ResNet-50 83.63±0.63 92.81±0.27 

ResNet-152 84.13±0.28 94.35±0.47 

Poly Net 86.87±0.39 94.65±0.19 

Inception-v3 87.94±0.19 93.42±0.36 

Xception 92.71±0.02 96.11±0.04 

Inception-v4 93.76±0.06 96.73±0.31 

Inception-resnet-v2 94.86±0.04 97.17±0.30 

ResNeXt-101 94.65±0.04 97.08±0.04 

DenseNet-264 95.74±0.05 97.72±0.38 

 

Table 4: HSI Classification accuracy during testing with Top-1 and Top-5 accuracy levels with 

varying parameters of CNN architectures 

Method # Params 
Training dataset 

# Params 
Testing dataset 

Top-1 Top-5 Top-1 Top-5 

ResNet-50 26M 77.75 95.14 89M 84.60 98.41 

ResNet-152 60M 79.59 95.96 87M 84.70 98.31 

Poly Net 34M 79.69 96.06 86M 84.81 98.41 

Inception-v3 24M 80.61 96.57 155M 85.42 98.72 

Xception 23M 80.82 96.67 557M 86.24 99.23 

Inception-v4 48M 81.84 97.19 66M 86.96 99.44 

Inception-resnet-v2 56M 81.94 97.29 66M 87.26 99.64 

ResNeXt-101 84M 82.76 97.80 480M 87.47 99.74 

DenseNet-264 92M 83.17 98.00 300M 90.59 99.87 

 

5. Conclusion  

In this paper, DenseNet-264 is used to classify the HIS characteristics of three independent 

datasets. The validation of DenseNet-264 reveals that the top-5 DenseNet-264 achieves higher 

classification accuracy than other current methods with a larger number of parameters. 

Furthermore, the DenseNet-264 model overcomes the decreased accuracy caused by vanishing 

gradients in high-level neural networks. As a result, information is kept across longer pathways 

between the source and destination layers rather than being lost between the levels. 
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